31 Oct 2022
Compound refractive lenses (CRLs) are widely used at synchrotron radiation facilities for X-ray beam shaping [1, 2] and focusing [3]. They are made by pressing a parabolic lens profile into a thin foil of aluminum or beryllium via a coining process. Their focusing capability depends on the manufacturing quality of the stamp and mechanical alignment during the coining process, both of which are limited by today’s technology [4]. Recently, diamond CRLs made by laser ablation and mechanical polishing emerged, which exhibit similar shape errors [5]. It has been shown that each lens shows a typical shape deviation of 500 nm from an ideal paraboloid of rotation [3]. When many of these lenses are stacked in order to create sub-micrometer X-ray beams, these shape errors add up and lead to spherical aberration, impacting the resolution and imaging capabilities of X-ray microscopes. A solution to overcome these challenges is the correction of aberration by an additional optical element, called a refractive phase plate [6]. It is tailor-made for the specific lens configuration and needs to be aligned with respect to the optical axis to within a few micrometers, requiring a motorization within a plane perpendicular to the optical axis. Here, we present the development of a new CRL lens holder with an integrated mechanism to align a phase plate and keep the aligned position over time and in between experimental campaigns in order to enable usability by non-expert users and to provide aberration-corrected nanobeams with CRLs within the NFFA catalogue for end users.31 Aug 2022
Under Horizon 2020 gender is a cross-cutting issue and 3 objectives underpin the strategy on gender equality: 1. Fostering gender balance in research teams, in order to close the gaps in the participation of women. 2. Ensuring gender balance in decision-making, in order to reach the target of 40% of the under-represented sex in panels and groups and of 50% in advisory groups. 3. Integrating the gender dimension in research and innovation (R&I) content. In Horizon 2020 funded projects grant beneficiaries commit themselves to promoting equal opportunities and a balanced participation of women and men at all levels in research and innovation teams and in management structures. Moreover, gender balance is a feature of H2020 projects evaluated under Impact. This document aims at having a detailed snapshot of NEP performances about gender in the first 18 months from the beginning of the project, also in comparison with the numbers presented in SHE FIGURES 2021 (https://ec.europa.eu/assets/rtd/shefigures2021/index.html), and at identifying actions to pursue to better address gender issues outlined in NEP proposals.31 Aug 2022
The recent development of Free Electron Lasers (FELs) opens the way for pump-probe experiments in the extreme ultra violet (EUV) and X-Rays regime. In particular, seeded FELs are the best candidates for experiments in which high wavelength purity and power stability is required, such as coherent non-linear experiments. In this case, the fine control of photon energy and polarization is the key for accessing the dynamics of core level electrons in solid state systems, thanks to the species selectivity given by the variable photon energy of FEL pulses.