Electronic & Chemical & Magnetic Characterization

Magnetic characterisation View all

MFDC Magnetic/ferroelectric/dielectric char.
The facility provides modular experimental stations to study the evolution of electric and magnetic dipole orders, as well as their degree of coupling, which is an identifying feature of novel magneto-electric systems. The users may assess technologically appealing materials’ features for designing multifunctional devices, such as magneto-electr
MOKE Magneto-Optic Kerr Effect
By MOKE the magnetic properties (e.g. coercivity, squareness ratio) of single micro-structures can be evaluated: no quantitative measure of the magnetization is provided, but from the shape of the hysteresis loop, both static and dynamic magnetization reversal processes can be investigated in detail.
Magnetometry Magnetometry
The facility provides an automated MagLab-EXA multi-measurement system for nanomaterials characterization. A set of analytical probes (AC/DC magnetometry, magneto-transport, Hall effect etc) is available to indentify technologically useful quantum mechanical phenomena to design materials (e.g. semiconductors, metals, magnetic oxides) with optimal
EPR Electron Paramagnetic Resonance
EPR technique allows the detection and study of transient and stable paramagnetic species such as free radicals, over a very wide range of temperatures.
SQUID Superconducting Quantum Interference Device
SQUID offers high resolving power in deciphering static and dynamic phenomena in low-moment, dilute magnetic systems. Invaluable insights on the physical-chemical response of magnetic nanomaterials are attained by measuring moment versus applied magnetic field or moment versus temperature. It also allows precise determination of the Curie, Néel or
MT Magneto-transport
The facility allows magneto-transport characterizations of semiconductor and metallic samples at temperatures down to liquid helium and fields up to 7T. Density and mobility of carriers can be measured through Hall effect, as well as quantum transport phenomena in 2D systems at low T. Carrier populations can be tuned by bias voltages and externa

Spectro-microscopy View all

AES/SAM Scanning Auger Microscopy
Auger Electron Spectroscopy (AES) and SAM are electron beam techniques allowing the analysis of the surface elemental composition of materials. By pointing or scanning the electron beam, localized information or spatial elemental distributions can be obtained. Auger depth profiling allows measuring elemental concentration profiles. In-depth info
XPEEM/kPEEM/SPEM PhotoEmission Microscopy
Photoemission microscopy combines XPS with high spatial resolution, achieved by a small spot X-ray beam or by a magnifying electron optical column. Surface-sensitive images are provided for investigating processes occurring at morphologically/chemically complex solid surfaces including chemical reactions and mass transport processes leading to l
SPELEEM spectroscopic photoemission and low energy electron microscope
The Spectroscopic PhotoEmission and Low Energy Electron Microscope (SPELEEM) installed at the MAXPEEM beamline offers unique possibilities for extracting simultaneously elemental, chemical, magnetic and electronic information at spatial resolutions down to the single digit nanometer range to users from a wide area of research fields.
HSI Hyperspectral imaging
Hyperspectral imaging is an advanced hybrid technique that incorporates simultaneously two techniques, imaging and spectroscopy. It finds applications on the characterization of materials with spatial variability like painted surfaces, or materials that have suffered stresses which alter their chemical composition.
MSI Multispectral Imaging
Multispectral imaging is a hybrid technique that allows the simultaneous acquisition of both images and reflection spectra. It is very useful to characterize materials with spatial variability like painted surfaces, or materials that have suffered stresses which alter their chemical composition.

Chemical analysis View all

HPLC HPLC with CAD, UV and Fluorescence detectors(Chemical composition analysis)
HPLC is analytical technique to separate, identify, and quantify molecules in a mixture. Dissolved components are pumped into a packed column where they are separated from each other due to their different degrees of interaction with the packing material. HPLC-UV/MS can be used for the detection and quantification of organic contaminants in water.
AT Automated Titration
Titration is an analytical technique that allows the quantitative determination of a specific substance (analyte) dissolved in a sample. This technique is based on a complete chemical reaction between the analyte and a reagent (titrant) of known concentration, added to the sample.
ICP-MS ICP Mass spectroscopy (ICP-MS) (single particle analysis, trace element analysis)
ICP-MS allows measuring elements at trace levels. Dissolved sample is introduced into an argon plasma where the molecules are dissociates and further ionized. Singly-charged ions thus formed are directed into the mass spectrometer. A special application of ICP-MS (spICP-MS) allows measuring size and number concentration of a particle suspension.

Luminescence spectroscopy View all

FCS Fluorescence Correlation Spectroscopy
Fluorescence Correlation Spectroscopy (FCS) is a fluorescence based technique that gives information on the diffusion of fluorescent molecules or objects. From the diffusion times, the size of diffusing species can be determined, and the interaction among molecules or nanoparticles can be studied.
TR-XRF Total Reflection X-ray Fluorescence Spectrometer (TR-XRF) (Trace element analysis)
TXRF is able to measure the elemental composition of samples (in general for elements with atomic number >12) prepared as a thin film specimen on a polished sample carrier.
FS Fluorescence Spectroscopy
Fluorescence is a type of luminescence caused by photons exciting a molecule, raising it to an electronic excited state. Fluorescence spectroscopy analyzes fluorescence from a molecule based on its fluorescent properties.
CL Cathodoluminescence
The cathodoluminescence integrates a scanning electron microscope (SEM) and a light microscope into one tool allowing SEM images and electron beam induced-luminescence images to be acquired at the same time. The analysis of the features in the luminescence spectra allows the characterization of the material properties.
PL PhotoLuminescence
PL is a non-contact, non-destructive method of probing the electronic structure of materials, often used in the context of semiconductor devices to determine the bandgap energy, the composition of heterostructures, the impurity levels, the crystal quality, and to investigate recombination mechanisms.
ML Microluminescence
Luminescence is any process in which light is emitted from a sample as a consequence of an excitation obtained through electrical polarization, electronic bombardment, optical illumination or magnetic excitation. The spectrum (color) of the emitted light provides important information on the electronic structure of the material. Introducing a mi

Optical spectroscopy View all

IRS UHV reflection-absorption IR spectroscopy
An infrared spectrum is commonly obtained by passing infrared radiation through a sample and determining what fraction of the incident radiation is absorbed at a particular energy. The peak position in the absorption spectrum corresponds to the frequency of a vibration in the sample molecule.
Ellipsometry Ellipsometry
Ellipsometry is a contact-free, nondestructive method for characterization of the dielectric and optical properties (refractive index, absorption and thickness) of layered nanostructures in the size range of < 1 nm to several μm.
FTIR Fourier Transform Infra Red Spectroscopy and Spectromicroscopy
IR spectroscopy is based on the absorption of infrared radiation by matter. This leads to energetic transitions in the vibrational state of concrete chemical bonds. Since the frequencies that are absorbed by the molecules are characteristic of their structure, this technique is a powerful tool for qualitative molecular analysis, although it can
RS Raman spectroscopy
Raman spectroscopy investigates the vibrational properties of a sample and provides chemical as well as structural information (for example, chemical composition, molecular arrangement or the crystalline structure). Raman spectroscopy does not require any specific sample preparation, size or condition and may be combined with micron spatial reso
Pump-probe Pump-probe
The pump-probe spectroscopy infrastructure provides in-situ probes of the excited state of the matter, i.e. in the time/frequency domain at the fs-ps scales.
OS Optical spectroscopy
UV/Vis/NIR spectroscopy is the measurement of the attenuation of a beam of light after it passes through a sample or after reflection from a sample surface. It is useful to characterize the absorption, transmission, and reflectivity of a variety of technologically important materials, such as pigments, coatings, windows, and filters.
BLS Brillouin Light Scattering
Brillouin spectroscopy is an empirical spectroscopy technique which allows the determination of elastic moduli of materials. The technique uses inelastic scattering of light when it encounters acoustic phonons in a crystal, a process known as Brillouin scattering, to determine phonon energies and therefore interatomic potentials of a material.

Neutron magnetic characterisation View all

MNRefl Magnetic Neutron Reflectivity
With MNR is possible to investigate thin magnetic layered structures down to thicknesses between 3–300 Å and lateral structures from nm to µm. The reflection of polarised neutrons allows to determine the density and the modulus and the direction of the magnetisation vector of buried layers. Magnetic roughness, magnetic domains, lateral structure
M-SANS Magnetic Small Angle Neutron Scattering
SANS is used for the analysis of structures between 1 and about 100 nm, which can not be characterised by microscopies or when samples are turbid due to multiple light scattering. SANS gives access to the structural investigation and the samples do not need to be diluted. In KWS-1 beamline magnetic samples are studied with the full polarisation ana
DNS Diffuse Neutron Scattering
DNS with single-crystal time-of-flight spectroscopy is ideal for the studies of complex spin correlations, such as in highly frustrated magnets and strongly correlated electrons via neutron polarization analysis. DNS also represents a powerful instrument for the soft condensed matter community for the separation of nuclear coherent scattering from

X-ray/soft-X-ray spectroscopy View all

IXS Inelastic X-ray Scattering
Inelastic X-ray scattering (IXS) permits to analyse several aspects of the dynamics of materials. The techniques involved include Compton scattering, X-ray Raman scattering, and resonant inelastic scattering. In this way electron momentum densities and atomic bonding can be probed and also magnetic excitations or electronic localised or collecti
XMCD/XMLD X-ray Magnetic Circular/Linear Dichroism
When X-ray absorption is measured with circularly/linearly polarized x-rays, spin and angular momenta contributing to the net magnetization / orientation of the magnetization axis, can be determined in ferromagnetic / antiferromagnetic systems, respectively. Dichroic effects arise by the difference between spectra measured with different helicit
XAS X-ray Absorption Spectroscopy
XAS is sensitive to the local bonding environment of the atom absorbing the X-rays, providing information on oxidation states, local orbital symmetry, molecular orientation and chemically selective density of states. It is widely used in molecular and condensed matter physics, material science, engineering, chemistry, earth science and biology.<
DiProi-FEL Coherent Diffraction Imaging @ Free Electron Laser
DiProI end-station is a multi-porpose experimental chamber dedicated to time resolved imaging and scattering experiments taking advantage of FEL radiation provided by the FERMI source. The instrument is particular appealing for provide ultrafast information on electronic and spin dynamics after an external stimolus.
IOS In-operando spectroscopy
Soft X-rays XAS operating at Ambient Pressure allows for in-operando (under working condition sample environment) spectroscopic investigation of surfaces and their catalytical properties. This opens interesting access to L and M-edges of most of the transition metals and K-edges of light elements (C, O and N). The high surface sensitivity

Electron spectroscopy View all

UPS Ultra Violet Spectroscopy
Ultraviolet photoelectron spectroscopy (UPS), also described as photoemission spectroscopy (PES) when applied to measurements on solid surfaces, is a technique suitable for measuring the spectral features that are close to the Fermi level for surfaces or adsorbates. UPS is particularly useful for determining the work function of a material.
RESPED/RESPES Resonant Photoemission Spectroscopy/Diffraction
Valence photoemission performed in resonance with core photo-ionization allows to study charge transfers between adsorbate species and the substrate surface and their time scale. If polarisation and emission angles are taken into account, specific atomic sites/bonds of complex molecules are probed. The technique is useful in applications where e
IPES Inverse PhotoEmission Spectroscopy
IPES probes the empty density of states above the Fermi level of conduction/valence band in condensed matter. The energy of the impinging electron is varied while photons are detected at fixed energy; in this way the spectrum of the density of unoccupied states, is obtained. IPES technique is complementary to Photoemission (PES) and combined PES-I
XPS X-ray Photoelectron Spectroscopy
XPS is a surface spectroscopic technique for quantitative measurements of the elemental composition or stoichiometry and the chemical state of the present elements, like their oxidation state and chemical bonds. Due to the limited free path-length of the excited photoelectrons within the material, XPS is highly surface sensitive, giving chemical
ARPES Angle Resolved Photoelectron Spectroscopy
ARPES allows to measure directly the electronic band structure of crystalline solids. Electrons are detected retrieving information about initial state energy, momentum and spin.